PHYSICAL REVIEW E

VOLUME 52, NUMBER 1

JULY 1995

Quantum transition-state theory below the crossover temperature

Dmitrii E. Makarov and Maria Topaler
School of Chemical Sciences, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801
(Received 17 November 1994; revised manuscript received 6 April 1995)

The quantum transition theory based on the quantum averaged effective potential is derived from first
principles and critically examined in the regime where tunneling prevails over thermally activated transi-
tions. A semiclassical approximation to the effective potential is derived, showing the relation of the
present theory to the semiclassical periodic orbit approximation. We demonstrate that the centroid of a
thermal path provides a proper choice of the unstable mode in transition-state theory only if the poten-
tial is symmetric or weakly asymmetric or if temperature is high enough. For a metastable potential that
is not bounded from below and decreases not too slowly, the centroid density diverges, leading to infinite
values of the rate; this problem can be partly cured by modifying the potential far from the transition

state.

PACS number(s): 05.30.—d, 82.20.Db, 73.40.Gk, 31.70.Hq

I. INTRODUCTION

In classical transition-state theory (TST) the rate con-
stant for surmounting a barrier is expressed in terms of
equilibrium statistical mechanics

k=1uzy'Zx"), (1)

where u =(2ky T /m)'/? is the average classical velocity
of the particle of mass m at temperature 7. Here Z, is
the partition function of the initial state (reactants) that is
calculated under the assumption that transitions over the
barrier are neglected and Z T(x ") is the partition function
of the particle that is forced to be at the transition state
x ', which—in the least sophisticated version of the
theory —coincides with the barrier top or the saddle
point.

The centroid method [1,2] is considered the most
promising candidate for a quantum transition-state
theory. Its prescription is simple: Calculate the partition
function of the quantum particle provided that the center
of mass or centroid of its thermal path

xg=B"" [Tdrx(r) )

is fixed at the transition state. (Here B=1/kzT. We will
be using the system of units in which #=1, kz=1, and
m =1 throughout the paper.) Then call this partition
function Z' and use it in Eq. (D).

Inspired by this intuitively appealing idea, several
workers have applied it to assess quantum effects on vari-
ous chemical reactions [3—-8]. Some of these results have
recently been reviewed by Voth [8]. Mills and Jonsson
[7] impressively demonstrated usefulness of the so-called
reversible work version of the theory (see also [9-11]). In
their paper they calculated the sticking probability and
free-energy barrier for dissociation of H, molecules on
Cu(110) surface, a problem that involves six quantum de-
grees of freedom and many more classical dimensions.
We are not aware of any other simulation method that
would be applicable to a problem of such high dimen-
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sionality.

The belief that the center of mass of the thermal path
x, should be used instead of the classical coordinate of
the particle is based on Feynman’s argument [12]: Con-
sider the path-integral representation for the partition
function

Z =exp(—pBF)

B
= D[x(7m)]e — | drtH(x,x } , 3
fx(O)=x(B) [x (m)] exp fo TH ) 3
where the classical Hamiltonian is given by
H(x,%)=%*/2+V(x). Expanding the pB-periodic
thermal path in a Fourier series  x(7)

=3~ _ .x,expliv,7), it is easy to see that the kinetic-
energy contributions to the exponential from the Fourier
components with Matsubara’s frequencies v,=2wn/f
are proportional to v2. Thus the integrand in Eq. (3) is
suppressed for the paths that have Fourier components
with large n. The zero Fourier component x, is analo-
gous to the classical position of the particle, since integra-
tion over x, does not involve kinetic energy terms and re-
minds in this respect of integration over the classical
coordinate when calculating the classical limit of the par-
tition function.

Such an argument, of course, does not justify use of x,,
as a replacement for the classical position at low tempera-
tures, especially the 7"=0 limit, where Matsubara’s fre-
quencies are vanishingly small and contributions from all
Fourier components are significant. Gillan, however,
demonstrated [1] that the centroid formula reproduces
the correct golden rule rate for a double well coupled to a
bath of classical oscillators, provided the classical veloci-
ty is replaced by a different velocity factor

u=(8m)"?Ax /B3, 4)

where Ax is the width of the centroid distribution, which
is assumed to be Gaussian. Even though the bath is con-
sidered classical, this is the deep tunneling regime for the
double well. This is still not completely convincing: the
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double well Gillan considered was symmetric. For such a
potential the centroid constraint is not too restrictive be-
cause any ‘“typical” path (e.g., a semiclassical tunneling
trajectory) should have its centroid situated at the barrier
top.

Later, Voth, Chandler, and Miller [2] justified the cen-
troid theory as a generalization of classical transition-
state theory and explained the way dynamical corrections
to the centroid formula can be calculated. They also
justified use of centroids below the crossover temperature
using semiclassical periodic orbit (instanton) theory and
derived the velocity factor in Gillan’s form Eq. (4), as-
suming that the centroid-constrained partition function is
Gaussian near the transition state.

Amusingly, the origin of the width Ax is quite different
in the cases of Gillan and of Voth, Chandler, and Miller.
In Gillan’s model, Ax results from coupling of the reac-
tion coordinate to a bath of classical oscillators. In Voth,
Chandler, and Miller’s case Ax is an intrinsic property of
the one-dimensional model they considered. Apparently,
there should be a more universal and less model-
dependent derivation of the velocity factor Eq. (4).

Given the fact that the centroid method has proven to
be a very useful methodology for computing quantum-
mechanical rates in many-body systems, understanding
its strengths and limitations is very important. Do we
obtain a better theory than other existing approximations
by using centroids at low temperature? The main advan-
tage of the centroid approach as compared to others
seems to be that quantum-mechanical partition functions
are routinely evaluated numerically using imaginary-time
path integrals, so one is not restricted to the stationary
phase approximation to the path integral, as in the case
of semiclassical theories, or to the spin-boson Hamiltoni-
an approximation to the tunneling system, with small
tunneling amplitude, as in golden-rule-type theories. The
existing derivations of the centroid relations and of the
velocity factor Eq. (4) in the low-temperature case,
though, start from the above two approximations. The
only notable exception is an insightful article by Stuche-
brukhov [13], which clarifies some of the questions posed
above. Stuchebrukhov shows in his paper that for some
potentials the Gaussian approximation breaks down for a
certain finite temperature and Ax formally becomes
infinite. Moreover, the centroid density may have a
minimum, either local or global, rather than a maximum
at the barrier top.

Still, use of centroids appears as a very tempting alter-
native to other statistical mechanical rate theories. “Ex-
act” methods based on the flux-flux correlation function
formalism can be implemented only for low-dimensional
problems, although effects of coupling to a multidimen-
sional dissipative reservoir can be incorporated exactly
[14]. Semiclassical instanton-type theories turned out to
be very successful in two or three dimensions [15-18];
however, the problem of finding periodic orbits in higher
dimensions may become severe. Also the stationary
phase approximation inherent to instanton theories may
not be sufficient to describe strongly anharmonic poten-
tials. The centroid formulation is not plagued by any of
these difficulties.

Rigorously formulating and testing the centroid theory
below the crossover temperature where tunneling prevails
over thermal transitions are the goals of this paper. In
Sec. II we derive the centroid result from the ImF formu-
lation of rate theory. We show that the centroid coordi-
nate is a convenient (but not unique) choice of the unsta-
ble mode that is to be continued to the complex plane in
order to regularize the partition function of a metastable
state and obtain its imaginary part. In Sec. III we de-
scribe a semiclassical theory for the effective potential.
This theory offers an alternative to various variational ap-
proximations to the effective potential [2,13,19] and, be-
ing a rigorous steepest-descent limit of the path integral
for the centroid density, provides deeper insight into the
relation between the semiclassical bounce (periodic orbit)
theory and centroid formulation and explains how strong
quantum fluctuations described semiclassically as bounce
trajectories give rise to the lowering of the effective po-
tential as compared to the classical one. In Sec. IV we at-
tempt to apply the formulated theory to a cubic parabola
potential and discover that it does not work because the
centroid constraint fails to eliminate the divergence of
the partition function. We argue that the problem we en-
counter is generic when the decay rate of a metastable
unbound potential is calculated. In order to avoid the
divergence problem, we modify the potential by setting it
to a constant value far to the right of the barrier and
eventually test our theory against the exact solution. We
find that the centroid approximation works only if the
modified potential is not too asymmetric. In order to
better understand when and why the centroid method
fails, a toy model is described in the Appendix that mim-
ics the properties of the action as a function of Fourier
components of the thermal path. Finally, Sec. V con-
cludes by discussing the nature of the approximations in-
volved in the centroid theory and outlines a quantum
transition-state theory free of those limitations.

II. DERIVATION OF CENTROID RELATIONS
FROM THE ImF METHOD

Consider a particle tunneling out of a metastable po-
tential described, e.g.,, by a cubic parabola
V(x)=wixX1—x /1)/2. The minimum of this potential
is at x =0, the maximum at x =x*. The decay rate of an
isolated “eigenstate” with complex energy
E,=E?—iTl', /2 is given by —2ImE, =T,, where we as-
sume that I', <<w,. The overall tunneling rate is then
given by ', averaged over the Boltzmann distribution
among the energy levels E ,? :

BE, -1 -
"~2 ' ImZ/Z,=2ImF , (5)

k=Zy'ST,e
n
where Z,=3, exp(—BE?) is the partition function of
reactants and F is the free energy of the system.

Before we proceed, two remarks are in order. First,
based on an underlying assumption of transition-state
theory, Eq. (5) does not take into account the possibility
of nonequilibrium population among the energy levels,
i.e., the energy diffusion regime [20]. Strictly speaking,
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this is possible only if the reaction coordinate is coupled
to a continuum of environmental degrees of freedom. At
high temperatures the coupling, which classically appears
as a friction force [20], should be strong enough that the
energy levels lying near the barrier top are not depleted.
In the deep tunneling regime where the transition occurs
from lower-lying energy levels, much weaker coupling is
required in order to maintain the Boltzmann distribution
[14,20].

The second comment concerns the applicability of Eq.
(5) to the case where the potential is not metastable but
consists of two wells (“reactant” and “product” valleys)
separated by a barrier. We can still consider the reactant
well as a metastable state as if the particle disappears
once it has crossed the barrier. Equation (5) in this case
will yield the forward rate of transitions from reactants to
products. Similar consideration of the product state will
give the backward rate constant. This is true, though, if
there is no phase coherence between the reactant and
product states; otherwise the rate constant may either not
be defined or be affected by coherence [14]. Weiss et al.
[22] justified use of the ImF method for the case of dissi-
pative tunneling in a slightly asymmetric double well and
showed that this method gives the same result as real-
time calculations as long as tunneling is incoherent and
the rate constant can be defined.

In principle, the free energy F given by Eq. (3) diverges
for an unbound Hamiltonian. In the complex scaling
method, the coordinate is allowed to be complex in order
to find complex resonances by solving a Schrodinger
equation [21,23]. Similarly, thermal paths in the path in-
tegral of Eq. (3) should be allowed to be complex valued,
in order to regularize the path integral and to find the
imaginary part of the free energy; no general numerical
procedure is available that does so. That is why Eq. (5) is
not suited for computation. In semiclassical bounce (in-
stanton) theories (see, e.g., [16,17,24]), Eq. (5) is evalu-
ated using the steepest-descent approximation [25]. The
stationary points of the action

s=[larH(x%) (6)

are classical B-periodic trajectories in the upside-down
potential. Two trivial trajectories x =0 and x* corre-
spond, respectively, to the reactant partition function Z,
and to thermally activated transitions over the barrier.
The bounce solution exists below the crossover tempera-
ture

T,=1/B,=w* /27 , @)

where w* is the unstable frequency of the barrier. This
solution represents neither a minimum nor a maximum of
the action but a saddle point in the space of thermal
paths. The path integral Eq. (3) diverges along the direc-
tion of the unstable mode in the function space; however,
it can be regularized by continuing integration into the
complex plane. It is important that integration along all
other modes except one is well defined and does not re-
quire any analytical continuation. In other words, sta-
tionary point analysis of the path integral Eq. (3) provides
a natural way to define a single unstable mode and then

to regularize the integral along this mode using the
steepest-descent approximation.

In general, the choice of the unstable mode is by no
means unique, as long as it provides the necessary regu-
larization of Eq. (3). We show below that the zero Fourier
component of the path, that is, its center of mass, pro-
vides another, more convenient from a numerical
viewpoint, choice of the unstable coordinate.

By introducing the effective potential
equivalently, the centroid density

Ve or,

p(xc ):CXp[ _ﬁVeﬁ'(xc )]
=2ap)"? [ D[x(1)18(x, —x;)

X exp [—fOBdTH(x,X)] , (8)

the partition function Eq. (3) is recast in a classical form
Z =2ap) "2 [ dx, exp[ —BV ulx,)] . )

Thus far no approximation has been made. Below, the in-
tegral (9) is evaluated by the method of steepest descent.

Assume that the effective potential has one minimum
at x,=x, and a maximum at xc=xT. Generally, we do
not necessarily expect Vg(x.) to have qualitatively the
same shape as the original potential V(x), e.g., it may
have several local maxima and minima; the treatment
below can be straightforwardly extended to the case of
multiple stationary points if the maxima and the minima
of the effective potential are well separated. Obviously,
unless V' (x) is symmetric, x T does not coincide with the
maximum of V(x). The integrand in (9) has two station-
ary points x,=x,,x'. Following Affleck’s procedure for
the classical case [26], the point x,=x, is a stable point;
integration in the vicinity of this point gives the partition
function of reactants Z,. To evaluate the contribution
from the second fixed point we expand the potential Vg
in a series around this point to obtain

exp[ — BV g(x)]
=exp[ —BVa(x ] exp[1B|Vi(x Nl(x —x )],

(10)
where Vig(x f)<o.

The integral over x is Gaussian and diverges, but after
extending the integration contour into the complex plane
of x and performing the integration using the method of
steepest descent one obtains

1

ImZ==— €XxX
28| Vi (x|172 P

[—BV.(xD]. (11)

Substituting this into (5) we obtain

k= 2 nl
ﬂ ZO| Veﬁ'

Gz Pl BV a1 (12)

+

From Eq. (10), p(x,) near the point x' is a Gaussian

distribution with width equal to
Ax2=[B|Vig(xH171 . (13)

The centroid-constrained partition function at x =x Tis
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Z,(x")=2mB) 1 exp[ —BV 4(x1)] . (14)
Using (13) and (14), (12) takes the form
k=Qm)287'Z; ' AxZ,(x1) , (15)

which is Gillan’s result [1] provided that x1is used as the
position of the transition state. Using the definition of
the velocity Eq. (4), Eq. (15) can be written in the form of
Eq. (1).

Note that Eq. (12) is not the classical transition-state
theory rate for the potential V g(x). If we assume that k
should be the rate of classical transitions in V g(x), then
one should introduce Affleck’s correction factor [26] ¢
such that

k=2¢ImF , ¢=B|Vi(xH"2/27, (16)

which results in a TST-like formula that is consistent
with the high-temperature limit:

= _ t

k 17BZ, exp[ —BVg(x )] . (17)
This is the usual centroid theory result obtained in [2].
For low temperatures Eq. (12) should be valid rather than
Eq. (17).

These formulas can also be easily extended to the mul-
tidimensional case: Suppose that the n-dimensional
effective potential V 4(x) has only one saddle point
x=x". Then introducing local normal coordinates at the
saddle point that include one unstable mode s (“tunneling
reaction coordinate”) and a set of stable modes g,
i=1,...,n —1, and repeating the previous reasoning we
obtain for the rate constant

n—1
kZo=2m)"*BAs | [T [BVegu(xN1712 | Z.(x"),

i=1
(18)

where the width of the centroid density distribution is
measured along the unstable mode

As?=[B|V g (xDI]7". (19)

III. SEMICLASSICAL THEORY
OF EFFECTIVE POTENTIAL

Several approximations have recently been proposed
for the quantum averaged effective potential Eq. (8); see,
e.g., [2,8,12,13,19,27,28]. Most of these theories are
based on a variational estimate for Eq. (8). Although the
path integral of Eq. (8) can be evaluated numerically,
those theories offer invaluable insight into the role of
quantum fluctuations in enhancing the transition rate.
Presented below is a semiclassical estimate for Eq. (8),
which provides additional physical insight into the role of
quantum fluctuations, since the interesting physics in-
herent to a potential that has several extrema is often
masked in a variational theory by using a harmonic oscil-
lator reference. Also the semiclassical effective potential
[which can be thought of as the potential along a

“minimum action path” (MAP) in the space of thermal
paths, in analogy to the “minimum energy path” [17] ex-
tensively used in classical rate theory] may be a good
reference for evaluating the quantum-mechanical rate in
much the same way as this is done in classical TST. This
idea will be further discussed in Sec. V.

A. Derivation

We start from the definition Eq. (8) for the effective po-

tential. Replacing the & function by a Gaussian
(2m) 20 " Texp(—x?%/20?) gives
1
exp[ =BV oq(x.)]=27B)" *——
xp[ B X ] WB (277_)1/20.
X [Dx(n)]exp{—Selx (D]},
(20)
where
— [# .2 X rB
se,,,—fo dr[1%2+V(x)] o2 fo drx(r)
x? 1 s 2
t ot [[larxn ] @1

Our strategy is to carry out all calculations with finite o
and take the o —0 limit at the end to recover the station-
ary phase approximation for the original path integral
Eq. (8). The stationary phase approximation in the path
integral amounts to demanding

8 g[x (1)]/8x (1)=0,

which gives the following equation of motion for the
“bounce:”

1
320_2

+

x Jlarxn=0.

Bo?

(22)

Using the definition of the centroid coordinate Eq. (2),
the bounce equation can be rewritten as

d’x _ dV(x) 1

J— -+ =

dr* dx o? (xe
Equations (2) and (23) should be solved self-consistently
because x, is an undefined variable that should satisfy
both of them. The bounce action is given by

s,,=fo”d7{%x2+V[x(¢)]}+ (xo—x,0%, (24)

1
202
where x (7) is the solution to Eq. (23).

The limit ¢ —0 is tricky. Since the right-hand side of
Eq. (23) should not be infinite, we obtain x,—x.. How-
ever, if the right-hand side of Eq. (23) is zero, this equa-
tion becomes the usual equation of motion in the poten-
tial — ¥ (x) and the centroid position of the trajectory x,
cannot coincide with an arbitrary value of x.. Therefore,
x.—x should scale as o2 so that

a=(x,—xq)/0? (25)
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remains constant.
To calculate the prefactor, expand the action around
the stationary point

2
o a1 (B (B us (s OSem
Ser Sb+2f0d'rfodTSX(T)Sx(T)sx(T,)sx('r), (26)

where the path is represented as x +8x, x being the
bounce solution of Eq. (23). For the second derivative we
obtain

8%S ¢
8x(7)8x (')

dZ
—4 iy
dr?

Integration over 8x can be performed by diagonalizing
the second derivative operator defined as

1
320.2 :

=8(r—7) + 27)

d? " 1 B
Eoy= —ﬁ+V [x,(T)] [y(r)+ B’ fo dry(r),
(28)
Loy, (1)=¢,p,(7) . (29)

Representing this operator in the basis of Fourier com-
ponents of Ox, it is easy to see that one eigenvalue g,
behaves as o ~2 in the limit o —0, which leads to cancel-
lation of the infinite prefactor in Eq. (20). This infinite
positive eigenvalue replaces the zero eigenvalue that ex-
ists in the spectrum of E(w) (that is, in the absence of
the centroid constraint on the path integral) and is com-
mon in the bounce theory [24]. The spectrum of
L (0 —0) is therefore positive and the determinant of this
operator D (o)=detL(c) is well defined. This deter-
minant is a properly regularized product of €,’s; the nor-
malizing factor can be determined by taking the limit of
free particles of harmonic oscillators (see below).

After taking the 0 —0 limit we arrive at the following
prescription for calculating V.4 semiclassically.

(i) Solve the equation of motion

_d’  dVi(x) _
a2 +%dx a(x,)/B (30)
together with
=R"1 B
x =B [Cdrx(r), (31)

which determines a(x.). Equation (30) is simply the
bounce equation for the potential V(x)—a(x,)x /.
Note that a(x,) can be recognized as a Lagrange multi-
plier that is to be introduced in order to minimize the ac-
tion of Eq. (6) with an additional constraint Eq. (31).

(ii) The effective potential is then given by

gVe,fuC):fO”dT{%xM Vix(nl)
+4lim In[o?detL(0)/B] . (32)

Note that normalization of the determinant D (o) leads
to a constant shift in the effective potential and is there-
fore of no concern.

If it were not for the last term in Eq. (32), the standard
instanton solution that obtains from Eq. (30) if a (x,)=0
would provide a stationary point (typically, a maximum)

0.5 —p e

0.4 -

0.3 —

0.2

FIG. 1. Semiclassical effective potential at Bw,=0.0, 8.0,
12.0, and 16.0 (solid, dashed, dotted, and dash-dotted lines, re-
spectively) for the symmetric quartic potential given by Eq. (35)
with F =0. The energy and the coordinate are measured in di-
mensionless units, as described in the text.

of the effective potential, in accord with the result of [2].
This stationary point is somewhat shifted though, due to
the prefactor.

As an illustration, one obtains a ‘“‘classical” effective
potential by assuming that the dominant contribution to
the path integral comes from the trivial solution

x=x,

such that a(x.)/B=V"'(x.). The prefactor is evaluated by
expanding the path in a Fourier series [19] to give

[~V gt = 22 el — ¥ (x,)]
exp| — X e —————— 3.4 0 ] X
p eff‘\ V¢ smh[Bco(.xC)/Z] p c ’
(33)
1.0 -
// N
; \
; \
0.8 , \
/ \
/ \
/ A A A A 4 \

0.6 A A A A A\
2 \
= 7’ ¢

0.4 — N ‘.

/ \
] A/ VN
02~ .,/ A
A Noa
; \
N
0.0 ""/*'»' T I T i B e S—
-1.0 —-0.6 -0.2 0.2 0.6 1.0
X

FIG. 2. Semiclassical (solid line) and exact (markers) effective
potentials for the symmetric quartic potential [Eq. (35) with
F=0] at T=T_,/2. Vy/%w,=17.0. The dashed line indicates
the potential ¥ (x); the semiclassical effective potential is plot-
ted only where it is different from V(x).
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FIG. 3. Semiclassical effective potential (upper part of the figure) and the bounce solution x (7) of Eq. (30) (lower part) for the po-
tential of Eq. (35) with F =0.1. Dotted lines indicate the potential ¥ (x), solid lines the effective potential. The vertical dashed lines
indicate the centroid position x, = —0.5, 0, and 0.5 for (a)-(c), respectively.
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where w*(x,)=V"(x,). Equation (33) is the high-
temperature limit of the Feynman-Kleinert effective po-
tential [19]. At lower temperature, they modified the fre-
quency «(x,) and the potential ¥ (x) using a Gaussian
smearing procedure to obtain a better reference function-
al for variational evaluation of the path integral. In other
words, Feynman and Kleinert’s procedure implies that
the integration over nonzero Fourier components of the
path is Gaussian, with an optimized dispersion that de-
pends both on temperature and on the potential shape.
In our semiclassical approach fluctuations around the
point x. are dominated by a large bouncelike optimum
fluctuation that appears when temperature is low enough.
Divergence of the classical expression Eq. (33) at the
poles of the prefactor where iw(x,)B=2m signals the on-
set of these large non-Gaussian fluctuations.

B. Example: Asymmetric double well

Consider the potential

v(g)=V,V(x) (34)
where
V(x)=1x*—1)7—Fx (35)

is a dimensionless potential expressed as a function of the
dimensionless coordinate x =¢q/q,. We also measure
time in dimensionless units t’=wyt such that the total
classical Hamiltonian becomes H = Vo[%)'c2+ V(x)],
Vo=wdq3. To avoid tedious calculation of preexponential
factors, consider the asymptotic semiclassical limit of
Vo /fwy>>1; the logarithmic term in Eq. (32) can simply
be neglected in this case. It is in this limit that the semi-
classical approximation is expected to become exact. Of
course, the rate vanishes in this limit; however, we can
study the quantity (#wy/V,)Ink, which remains finite.
The classical effective potential Eq. (33) coincides with
V(x) in this limit.

For T > T, no bounce solutions exist. As temperature
is decreased below T, there appears a range of x values
where the bounce solution exists. The center of mass of
such a bounce solution is, roughly speaking, comprised
between the two points where |a)(xc)|ﬂ=27r; the region
spanned by bounces increases as temperature is lowered.

This picture is illustrated in Fig. 1, where the semiclas-
sical effective potential is plotted at different tempera-
tures for the symmetric case (F =0). At very low temper-
atures the effective potential becomes flat, with
Vig(x,.)—0. The height of the effective barrier also tends
to zero Vz,f —S?/B, where S is the bounce action at zero
temperature (if the prefactor is taken into account, it
tends to the energy of the ground state, which is small
compared to V|, in our approximation). The centroid den-
sity therefore becomes a constant value between the two
potential minima, a result that is in accord with the two-
state model of Gehlen and Chandler for electron transfer
[29], as well as with Gillan’s prediction [1]. Vanishing of
the curvature of the effective potential at zero tempera-
ture does not mean that the centroid expression for the

rate constant diverges: Even though Ax — o, the factor
1/B in Eq. (15), together with the exponentially growing
partition function of the reactants, compensates for this
effect. The semiclassical effective potential is in good
agreement with the exact result obtained by Monte Carlo
sampling of the path integral of Eq. (8), as shown in Fig.
2.

In Figs. 3(a)-3(c) the effective potential is shown for an
asymmetric case F =0.1, Bw,=12.0. The dashed line in-
dicates the classical potential. Bounces exist in the region
where the dashed line is different from the solid line,
which represents the semiclassical approximation for the
effective potential. In the lower part of each figure the
bounce solutions x (7) that satisfy Eq. (30) and provide
the dominant contribution to the effective potential at
points x,~ —0.5, 0.0, and 0.5 are shown. This bounce
has a large amplitude and spans a large part of the bar-
rier; for x, ~0.0 the bounce solution spans the whole bar-
rier, i.e., even though the area occupied by bounces is not
too wide yet at this temperature, the effective potential is
determined by the global shape of the barrier.

IV. DECAY OF METASTABLE STATE

The centroid theory is known to provide accurate re-
sults for transmission through a symmetric Eckart bar-
rier [2]. In this section the centroid theory is tested for a
metastable potential. The cubic parabola potential

V(x)=1taolx*(1—x/I) (36)

is a prototypical model in tunneling studies [24,23].
Benchmark calculations of resonance positions and
widths by the complex scaling method have been report-
ed by Hontscha, Hanggi, and Pollak [23]. In this section
we wish to find out whether the result given by the cen-
troid formula (12) will agree with the exact rate constant
obtained in [23]. However, substituting Eq. (36) into Eq.
(8) one finds that the resulting centroid-constrained parti-
tion function diverges. Formally, this can be seen by
representing the path integral of Eq. (8) as an integral
over Fourier components of the path x (7). The source of
divergence is not only the integration over the zero
Fourier component x,, which is eliminated by the cen-
troid constraint x,=x,, but integration over all other
Fourier components as well. Indeed, cubic terms in the
exponential in addition to the quadratic terms necessarily
lead to a divergent integral.

The divergence of the centroid-constrained partition
function can be understood as follows: Suppose the cen-
troid of the thermal path is fixed at x,=x,. Normally,
large deviations of x (7) from x. are prohibited by large
kinetic-energy contribution to the action they entail. For
example, if the thermal path reaches a remote point at
some moment 7y, x (7;)>>1, then the kinetic-energy con-
tribution to the action will be on the order of
[x (7,)—x.]*/2B. However, the potential-energy contri-
bution approximately equal to 8V [x (r,)], will favor such
a large fluctuation if the potential V' (x) is unbounded
from below and goes to — oo faster than —x? as x — 0.
Therefore, the integrand of Eq. (8) can be made arbitrari-
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ly large and the integral diverges.

Such a reasoning does not exclude the possibility of a
local minimum of the integrand. In fact, the classical
effective potential Eq. (33), which is obtained with the as-
sumption that the thermal path does not deviate too
much from the static solution x =x,, corresponds to such
a minimum. Beyond the Gaussian approximation Eq.
(26) we will discover that a large enough fluctuation 8x
can make the integrand arbitrarily large. Therefore, for
B> 0 the static solution provides a local but not the glo-
bal minimum of the integrand in Eq. (8). (This minimum
becomes global if the inverse temperature [ is exactly
zero.) For the potential of Eq. (36) one also finds nontrivi-
al bounce solutions whose centroids are located to the left
of the barrier; the action for such a bounce is greater than
that of the static solution. These bounces correspond to
local maxima of the action. The existence of such local
extrema of the action explains the following paradox: In
a way different from ours the authors of [2] showed that
the semiclassical result for the rate can be recast in the
form of Eq. (15). Instead of a naturally expected im-
provement, one may run into serious trouble trying to use
the exact value of p(x) instead of its semiclassical coun-
terpart. Indeed, for a metastable potential p(x) diverges.
Moreover, for T >>T, the classical effective potential of
Sec. IIT A gives the correct value of the rate constant (see,
e.g., [2,20]), while the true centroid density Eq. (8)
diverges for arbitrarily high (but finite) temperature. This
paradox is further discussed in the Appendix.

We find therefore that the centroid constraint elimi-
nates the divergence of the partition function, as claimed
in Sec. II, only if the potential is either bounded from
below or decreases slowly enough. In practice, this is not
a very stringent condition: Most of the potentials that
are relevant for rate theory are bounded from below and
use of potentials such as Eq. (36) is an idealization. If the
potential  (36) is modified to be constant
V(ix)=V(x, )=V, for x Zx, >1, then the rate should
not be very sensitive to the choice of x,,. For example,
using the semiclassical theory, the rate constant is pre-
cisely the same for any choice of x,, because the bounce
solution obviously never reaches the point x,,. Further-
more, it has been shown in [23] that for
V* /fiwg=2mawyl*/27%=3 the instanton estimate of the
rate constant at 7' <<T, agrees with the exact result
within 10%.

These observations suggest the above modification of
the potential as a good way to cure the divergence prob-
lem. We evaluated the effective potential needed in Eq.
(12) by the Monte Carlo sampling of the path integral Eq.
(8) in the Fourier representation. The results are present-
ed in Fig. 4, where an Arrhenius plot of the rate constant
[logio(k /wy) vs T, /T] obtained using Eq. (12) is shown
for two values of V,,, together with the exact numerical
data for the cubic parabola potential [23]. For energy
V,.,=—V*/3 that is not very low and comparable with
the zero-point energy, the centroid result for the modified
potential follows closely the exact result for the cubic pa-
rabola down to the temperatures where the low-
temperature plateau of the rate is reached. However, for
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a lower value of V,,=—V*, the centroid approximation
fails, yielding a rate constant that unphysically grows as
temperature decreases. For temperatures close to T, the
result is almost insensitive to V,,, giving a rate that is in a
very good agreement with the exact value.

The effective potential is plotted in Fig. 5 for different
temperatures. In accord with semiclassical considera-
tions, the transition state x T shifts to the left towards the
minimum of the potential as T decreases. For tempera-
tures close to T, the shape of the effective potential near
the transition state is insensitive to V,,, while for
T =0.5T, the effective potential is considerably different
for the two different values of V,,, leading to different re-
sults for k.

We therefore conclude that the modification of an un-
stable potential suggested above works only if the
modified potential is not too asymmetric or temperature
is not too low. For the particular choice of V,,=—V*/3
at low temperatures the result of the centroid method
differs from the data of [23] by about 25%, while the ac-
curacy of the instanton method is 10%. The reason why
the centroid method may turn out to be less accurate
than the semiclassical approximation is discussed in the
Appendix.

V. DISCUSSION

We have demonstrated in this paper that the centroid
formula conjectured by Gillan [1] can be derived as a sta-
tionary phase limit of the imaginary part of the free ener-
gy. In order to get the correct answer with the centroid
method one should redefine the transition state [2,13] as
the point where the centroid density (8) is minimal. For
an asymmetric potential the transition state tends to the
minimum of the potential and the effective barrier Vzﬁ
vanishes. However, the transition rate is proportional to
exp(—BV's) and remains finite. The finiteness of BV g
justifies use of the steepest-descent approximation Eq.
(10) when evaluating the imaginary part of the free ener-
gy.

As shown by recent studies [2,30], for a symmetric or
nearly symmetric barrier the centroid approximation
yields an accurate result and is seemingly superior to
semiclassical methods if the barrier is not too high or is
highly anharmonic. (More quantitatively, the semiclassi-
cal approximation is accurate if the size of quantum fluc-
tuations around the stationary bounce solution [16,17] is
small compared to the length at which anharmonic
corrections to the potential come into play.)

We have tested the centroid method for an asymmetric
potential and found that if the asymmetry is not too large
or temperature not too low, the centroid method yields a
reasonable estimate for the rate below the crossover tem-
perature. The accuracy of the method deteriorates as
temperature is decreased, being practically exact at
T~=T,. For temperatures close to zero the result of the
centroid method turns out to be less accurate than that of
semiclassical periodic orbit theory. This conclusion ap-
pears surprising at first sight since the centroid method,
involving “fewer stationary phase integrations” (in fact,
only one), seems to be ‘““less approximate” than the pure

stationary phase approximation to the free-energy path
integral exploited by the semiclassical method. The ex-
planation lies in the analytical continuation procedure
that inherently involves the stationary phase approxima-
tion. For a strongly asymmetric potential the direction of
the x, coordinate in the space of Fourier components of
the thermal path is considerably different from the direc-
tion of the unstable normal mode at the saddle point of
the action, thereby leading to an incorrect value of imagi-
nary part of the analytically continued free energy.

It follows from the discussion of Secs. II and III that
quantum TST can be formulated in much the same way
as classical TST: The quantum theory deals with saddle
points of the action in the (infinite-dimensional) space of
thermal paths, while the classical theory is formulated in
terms of the saddle points of the potential in the
configuration space. Loosely speaking, as the tempera-
ture is raised above T, all relevant thermal paths col-
lapse to points in the configuration space such that the
quantum averaged potential of Eq. (8) becomes the classi-
cal effective potential Eq. (33). From this perspective, the
best choice of the ‘“reaction coordinate” in the space of
thermal paths should be the one suggested by the above
analogy, the minimum action path that passes through
the saddle point of the action and coincides with the nor-
mal mode at this point. To determine the effective poten-
tial, thermal paths should be constrained in the hyper-
plane perpendicular to the MAP. This prescription
avoids the divergencies that arise when the centroid con-
straint is used and therefore it should produce meaning-
ful results at arbitrarily low temperatures without invok-
ing additional tricks. We intend to examine the feasibili-
ty of such an approach in our future work.

For clarity, our discussion in this paper focused on
one-dimensional potentials. A multidimensional generali-
zation of the theory is provided by Eq. (18). In the dissi-
pative tunneling model [31] the system coordinate x is
coupled linearly to the bath of harmonic oscillators; the
bath degrees of freedom can be integrated out, leading to
quadratic nonlocal terms in the action of the particle.
Adding such a quadratic term does not change any of our
conclusions and, moreover, does not complicate numeri-
cal evaluation of the centroid density using Monte Carlo
path-integral techniques.

As a final remark, we note that recently the idea of
electronic centroid has been used to study electronically
nonadiabatic chemical reactions [29,30,32,33], that is,
those that involve transitions between two distinct
potential-energy surfaces. Egger, Mak, and Weiss [33]
showed strong correlation between the nuclear and the
electronic centroids. The treatment in those papers was
based on perturbation theory in electronic coupling, as-
suming electronically nonadiabatic transitions.

On the other hand, it has been shown [16,17,34] that
the problem of nonadiabatic tunneling can be formulated
semiclassically in terms of nuclear bounce trajectories, in-
terpolating smoothly from the electronically nonadiabatic
to the adiabatic tunneling regime. Can a general
transition-state-like theory be formulated in this case?
We believe that the answer is yes: Different electronic
states can be described as corresponding to the eigenval-
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ues of the Pauli matrix o,. In electronic centroid
theories [29,30,32-34] o, plays the role of the reaction
coordinate and the centroid of a thermal path is given by
o, =B_1fgdr o,(7). Therefore o, may be treated as an
additional degree of freedom and incorporated into the
multidimensional centroid theory outlined in Sec. II.
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APPENDIX: A SIMPLE TOY MODEL

A toy model presented below illustrates the failure of
the centroid method for strongly asymmetric potentials.
The model is based on representing the action Eq. (6) in
terms of the Fourier components x,,x,... of the path
x (1),

JldrH %)= (xgx,,000)

The centroid constraint amounts to setting x,=x.. In
the Fourier component space any path x (7) is represent-
ed by a point. For example, saddle points of the surface
S(xg,x,,...) represent bouncelike trajectories, while the
points x;=x,= --+ =0 correspond to static solutions
x(T)=x,.

For the potential of Eq. (36) the action is a polynomial
that contains quadratic and cubic terms in x,. In order
to somehow mimic the properties of such a function, con-
sider a two-dimensional polynomial of the form

S (x0,x,)=0.5x3(1—x4)+0.65x2 —x3x,—0.5x3 .
(A1)

We found that this function very closely reproduces the
properties of the action for a cubic parabola potential.
The choice of the coefficients of the cubic polynomial of
Eq. (A1) is rather arbitrary and is only dictated by con-
venience. The contour map of this function is shown in
Fig. 6. The function has one minimum x; =x,=0 and
one saddle point x, =x, xo=x¢. The partition function
is defined as

Z= [dxodx, exp[ —BS(xq,x,)] . (A2)
This integral diverges and is to be regularized by extend-
ing the integration into a complex plane. One way of do-
ing that is to use the steepest-descent approximation near
the saddle point, which gives the dominant contribution
to the imaginary part of Z.

Introducing the unstable (s) and stable (¢) normal
modes at the saddle point, the action can be represented
as

S(s,t)=S(x8,xT)+1loit’—lols? . (A3)
Expressing Eq. (A2) in terms of the new coordinates, the
source of divergence is integration over s. Continuing the
integration over s into the complex plane, the imaginary
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part of Z is equal to

T
ImZ =
B

1 Ws

exp[—BS(x&,xT)] . (A4)

This is nothing but the bounce or instanton approxima-
tion for the action of Eq. (A1).

Next, let us examine the possibility of analytical con-
tinuation offered by the effective potential idea: After in-
tegrating over x,; one is left with the centroid density
p(x,) that is to be integrated over x,. However, it is easy
to see that for every fixed x, the integrand is an exponen-
tial of a cubic polynomial and therefore the integral over
x, diverges. For fixed x, <x§ the action S(x4,x) has a
minimum and a maximum,; ignoring the divergence of the
integral and taking into account only the contribution
from these local minima, one immediately arrives at the
semiclassical effective potential. As discussed in Sec.
III-V, this potential corresponds to local minima of the
centroid-constrained action, which lie on the steepest-
descent line that connects the action minimum and the
saddle point (MAP). The stationary points that corre-
spond to the maxima of S for every given x, can also be
found numerically in the cubic parabola model Eq. (36);
they are identified as bouncelike solutions that have ac-
tion greater than BV*, thus supporting our conjecture
that the two-dimensional model of Eq. (A1) reproduces
correctly the topology of the action in the Fourier space.
We therefore find that the centroid coordinate x, is not
the right choice of the unstable mode because the integral
over x| is still divergent.

From this model it can also be understood why the
modification of the potential proposed in Sec. IV did not
completely cure the problem. If the action S is bounded
from below by some finite value S,;,, then the centroid
density [dx, exp[ —BS (x¢,x,)] will be dominated either
by the value of exp[ —f3S (x,,x;)] at the point where the
action reaches its local minimum, as in the semiclassical
approximation for the effective potential or by approxi-
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mately exp(—BS,in), Whichever is greater. In the latter
case, by increasing the asymmetry of the potential, the
value of exp(—fBS,) and consequently the value of the
rate constant one obtains from the centroid approxima-
tion can be made arbitrarily large, which is apparently in-
correct. Only if the contributions from the points that
are far from the saddle point are disregarded can one ob-

tain the correct value of the rate constant. That is why,
paradoxically enough, use of the semiclassical approxi-
mation to the effective potential, which, as we have seen
before, is incorrect for the cubic parabola potential of
Sec. 1V, yields the correct semiclassical limit of the rate
constant, while the true effective potential leads to an
infinite rate.
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